Neurofilaments

Sources/Clones

Neurofilament Triplet Proteins
Antibodies are available from Accurate (A286), Biogenex (2F11, NF01), Dako (2F11, NR4), Diagnostic, EY Labs, Enzo, Labsystems and Seralab (BIO-51H, 2F11).

Neurofilament 70 kD
Antibodies are available from Accurate, Biodesign (NR4, DP5-1-12), Biogenesis (NF01), Boehringer Mannheim (N52), Calbiochem, Chemicon, Cymbus Bioscience (NR4), ICN, Immunotech (DP5-1-12), Novocastra, Oncogene (NR4), Seralab (NR4), Serotec (DP5-1-12), Sigma (NR4, N52) and Zymed (RMS12).

Neurofilament 150 kD
Antibodies are available from Accurate (NN18, RNF403), Amersham, American Research (NF403), Chemicon, Cymbus Bioscience (BF10), Biodesign (DP43.16), Biogenesis (BIO-46H, polyclonal), Boehringer Mannheim (BF10, NN18), Immunotech (DP43.16), Medac, Milab (NF403), Novocastra (BF10), Oncogene (NN-18), RDI (BF10), Saxon (403), Seralab (NN18), Sigma (NN18) and Zymed (RM0270, RM0281, FNP7).

Neurofilament 200 kD
Antibodies are available from Accurate (N52.1.7), Amersham, American Research (NF402), Biodesign (RT97), Biogenesis (BIO-66H), Boehringer Mannheim (RT97, NE14), Calbiochem, Chemicon, Cymbus Bioscience (RT97), ICN (402), Immunotech (DP12.10), Medac, Milab, Novocastra (RT97), RDI (RT97), Oncogene (NE-14), Pierce (NE14), Saxon (402), Seralab (NE14), Serotec, Sigma (NE14) and Zymed (RM024, TA51).

Fixation/Preparation
Most antibodies available are immunoreactive in routine processed tissues but the neurofilament triplet proteins are fixation dependent and immunostaining is enhanced following HIER.

Background
Neurofilaments (NF) are distinct from other intermediate filaments (IF) in that they are composed of three different subunits of distinct but related proteins of 70, 150 and 200 kD as compared to other IFs which range from 40 to 70 kD in molecular weight. The antigenic determinants of each of the subunits may be unique or shared and each NF protein is a separate gene product. NFs are found in neurons and the neuronal processes of the central and peripheral nervous tissue. It is likely that nearly all neurons can constitutively express all three NF genes and reports of absence of subunits of NF in certain neurons probably reflect technical limitations, as the proteins are fixation dependent.

Applications
The antibodies to NFs stain all neurons and axonal processes of the central and peripheral nervous system. The only exception seems to be the olfactory sensory neurons, which contain only vimentin IFs and are unique in that they die and are replenished throughout the lifespan of the mammal. The immunostaining of NF is employed for the study of neuronal distribution and innervation in normal and abnormal tissues (Krammer et al, 1994; Oki et al, 1995) and neuronal differentiation in neoplasms. The detection of NF detection of NF helps identify neurons and axonal processes in cases of suspected Hirschsprung's disease. NFs are found in a variety of tumors including neuroblastoma, ganglioglioma, medulloblastoma, retinoblastoma, pineal parenchymal tumors (Appendix 1.7) and in neuroendocrine and neuroepithelial tumors such as Merkel cell carcinoma (Leong et al, 1986), carcinoid (Kimura et al, 1989), esthesioneuroblastoma, ganglioneuroblastoma, ganglioneuroma, neuroblastoma, oat cell carcinoma, paraganglioma, pheochromocytoma and in teratomas with neuronal differentiation. NF may also be expressed in primitive/peripheral neuroectodermal tumors (PNETs) (Llombart-Bosch et al, 1989; Papierz et al, 1995). Anti-NF is useful in the separation of neuroblastoma and PNET from other small round cell tumors in childhood (Leong et al, 1989), which include rhabdomyosarcoma, lymphoblastic leukemia and small cell osteogenic sarcoma.

Comments
As all neurons express all three subunits of NF, antibodies to the triplet protein should be employed in diagnostic workups.

References
•Kimura N, Sasano N, Namiki T 1989. Coexpression of cytokeratin, neurofilament and vimentin in carcinoid tumors. Virchows Archives A Pathology and Anatomy; 415: 69-77.

•Krammer HJ, Karahan ST, Sigge W, Kuhnel W 1994. Immunohistochemistry of markers of the enteric nervous system in whole-mount preparations of the human colon. European Journal of Pediatric Surgery; 4: 274-278.

•Leong AS-Y, Phillips GE, Pieterse AS 1986. Criteria for the diagnosis of primary neuroendocrine carcinoma of the skin (Merkel cell carcinoma). A histological, immunohistochemical and ultrastructural study of 13 cases. Pathology; 18: 393-399.

•Leong AS-Y, Kan AE, Milios J 1989. Small round cell tumors in childhood: immunohistochemical studies in rhabdomyosarcoma, neuroblastoma, Ewing's sarcoma, and lymphoblastic lymphoma. Surgical Pathology; 2:5-17.

•Llombart-Bosch A, Terrier-Lancombe MJ, Peydro-Olaya A, Contesso G 1989. Peripheral neuroectodermal sarcoma of soft tissue (peripheral neuroepithelioma): a pathologic study of ten cases with differential diagnosis regarding other small round cell sarcomas. Human Pathology; 20: 273-280.

•Oki T, Fukuda N, Kawano T et al 1995. Histopathologic studies of innervation of normal and prolapsed mitral valves. Journal of Heart Valve Disease; 4: 496-502.

•Papierz W, Alwasiak J, Kolasa P et al 1995. Primitive neuroectodermal tumors: ultrastructural and immunohistochemical studies. Ultrastructural Pathology; 19: 47-166.

Bibliografia
Manual of diagnostic antibodies for immunohistology / Anthony S.-Y. Leong, Kumarasen Cooper, F. Joel W.-M. Leong.