Pituitary Hormones (ACTH, FSH, HGH, LH, PRL, TSH)

Sources/Clones

Antiadrenocorticotropin (ACTH)
American Qualex, Axcel/Accurate (polyclonal), Biodesign (polyclonal), Biogenesis (polyclonal), Biogenex (polyclonal), Caltag Laboratories (polyclonal), Chemicon (polyclonal), Dako (02A3, polyclonal), Fitzgerald (polyclonal), Milab (polyclonal), Novocastra, Sanbio/Monosan (polyclonal), Seralab, Serotec (A1H5, A5B12), Sigma (polyclonal) and Zymed (polyclonal).

Antifollicle-Stimulating Hormone (FSH)
Axcel/Accurate (polyclonal), Biodesign (301, 1801, 29; 701, 702, 706, 709, S1, polyclonal), Biogenesis (754, 143, BIO-FSHb-00, polyclonal), Biogenex (78/74 1F11, polyclonal), Dako (polyclonal) and Fitzgerald (polyclonal, M27301, M210201, M26092, M94166, M94163, M94164).

Antihuman Growth Hormone (HGH)
Accurate (12), Advanced Immunochemical (GH29), Biodesign (901, 902, polyclonal), Biogenesis (2F10, Rt, polyclonal), Biogenex (54/9 2A2, polyclonal), Dako (polyclonal), Fitzgerald (M94168, M94169, M32222, polyclonal), Novocastra (polyclonal), Seralab (polyclonal) Serotec (B008, E1, G1), Sigma (GHC2) and Zymed (ZMGH2, polyclonal).

Antihuman Luteinizing Hormone (LH)
American Research Products (1561-18), Axcel/Accurate (polyclonal), Biodesign (2004, 6101, 6102, 6103, [6206, 6207, 62], polyclonal), Biogenesis (1C10, 3D7, 4E3, G11, polyclonal), Biogenex (3LH 5B6 YH4, polyclonal), Cymbus Bioscience (6101), Dako (polyclonal), Fitzgerald (polyclonal), Serotec (INNbLH1) and Zymed (ZMLH2, ZSL11).

Antiprolactin (PRL)
Axcel/Accurate (polyclonal), Biodesign (164.22.12, [6201-6204,62], [ME.121, ME.1], S2, [2605, 2606]), Biogenesis (1D5, 626/02, 633/1, polyclonal), Dako (polyclonal), Fitzgerald (M94192, M94193, M94194, M31031, M31032, M31033, M310110, M310111, M310112, polyclonal), Immunotech (164.22.16) and Zymed (ZMPL1).

Antihuman Thyroid-Stimulating Hormone (TSH)
American Research Products (25TH7G12), Axcel/Accurate (polyclonal), Biodesign (9001-90010), Biogenesis (TSH-03, polyclonal), Biogenex (5404, polyclonal), Dako (polyclonal), Fitzgerald (polyclonal), Novocastra (QB2.6, polyclonal), Seralab (JOS2.2, polyclonal) and Zymed (ZMTS2, ZMTS4).

Fixation/Preparation
All the antibodies against the pituitary hormones are applicable to formalin-fixed, paraffin-embedded sections. Although not essential, enzyme antigen retrieval pretreatment with Target Unmasking Fluid (TUF, Signet) or trypsin may improve immunoreaction on paraffin-embedded and frozen sections.

Background
In all instances antibodies against the pituitary hormones were raised using purified extract from human pituitary glands as immunogen. The adenohypophysis comprises approximately 75% of the normal pituitary gland. It consists of the pars distalis, pars intermedia and pars tuberalis. The pars distalis is roughly divided into a midline zone (PAS-positive mucosubstance containing ACTH [15-20%], FSH/LH [10%] and TSH [5%] cells) and two lateral portions that stain positively with acidic dyes (PRL 15-20% and GH 50%). It should be noted that cells are not strictly limited in their geographic distribution. Trichromic stains such as the PAS-orange G method serve to highlight the PAS-positive basophils and the orange G-positive acidophils. Since this reactivity correlates only crudely with hormonal function, it is therefore necessary to resort to immunohistochemical characterization for proper identification. The cells are arranged in cords and are encircled by well-formed basement membrane. These cells lie in immediate proximity to a capillary to facilitate the secretory process. The general, histochemical and immunohistochemical characteristics of normal adenohypophyseal cells are summarized in Table 1 (for review, see Scheithauer, 1984).

Applications
The major role of immunohistochemistry utilizing antibodies to pituitary hormones is that it serves as the primary basis of adenoma classification. A study comprising a surgical series (Robert, 1979) showed 80% of pituitary adenomas to be functional whilst a combined surgical/autopsy series found only 50% to be hormonally functional (Earle and Dillard, 1973). In adults, adenomas may present with hyperfunction (amenorrhea-galactorrhea, Cushing's disease, Nelson's syndrome, and acromegaly or gigantism), hypofunction (insufficiency of gonadal, thyroidal or adrenal function) or with compressive signs (visual disturbance, headache, or raised intracranial pressure) (Scheithauer, 1984). Aggression of pituitary adenomas is based on the radiological assessment: grade I, microadenomas

Comments
Histopathology laboratories servicing neurosurgical units need to provide a comprehensive functional characterization of pituitary adenomas. The use of the normal pituitary gland will suffice as a positive control for these six hormones.

References
•Earle KM, Dillard SH Jr 1973 Pathology of adenomas of the pituitary gland. Exerpta Medica International Congress Series No. 303, pp 3-16.

•Hardy J, Vezina JL 1976 Transsphenoidal neurosurgery of intracranial neoplasm. Advances in Neurology 15: 261.

•Robert F 1979 Electron microscopy of human pituitary tumors. In: Tindall GT, Collins WF (eds) Clinical Management of Pituitary Disorders.New York: Raven Press, pp 113-131.

•Scheithauer BW 1984 Surgical Pathology of the Pituitary: The Adenomas. Part 1. Pathology Annual 19:317-369.

Bibliografia
Manual of diagnostic antibodies for immunohistology / Anthony S.-Y. Leong, Kumarasen Cooper, F. Joel W.-M. Leong.